
Entity Operation

This section will study the method of input, update, find, remove, disposition, the data on a certain DB
using the ORM service.

Input

The persist() method in the EntityManager should be called to add the data case by case on the DB.
The entity in calling the persist() method should be transmitted as the input element.

Sample Source

private Department addDepartment() throws Exception {

 // 1. insert a new Department information

 Department department = new Department();

 String DepartmentId = "DEPT-0001";

 department.setDeptId(DepartmentId);

 department.setDeptName("SaleDept");

 department.setDesc("Sales Department");

 em.persist(department);

 ...

 return department;

}

Above example delivers and processes the Entity of department as input factor to persis() method of

EntityManager.

Update

Updating data is possible in two ways. First, it can be updated by calling the merge() method in the

EntityManager, and revising case by case on the DB. When a certain object is in persistent state and

there were changes in properties of the object, the change is checked when terminating transaction

without calling the method directly and the change is reflected on the DB.

merge Sample Source with calling

public void testUpdateDepartment() throws Exception {

 // 1. insert a new Department information

 Department department = addDepartment();

 // 2. update a Department information

 department.setDeptName("Purchase Dept");

 // 3. explicit method calling

 em.merge(department);

}

Above example delivers and processes the Entity of department as input factor to merge() method of

EntityManager.

merge Sample Source without calling

public void testUpdateDepartment() throws Exception {

 // 1. insert a new Department information

 Department department = addDepartment();

 // 2. update a Department information

 department.setDeptName("Purchase Dept");

 // commit. successful update!!!

}

Above example changes through setDeptName() and is changed at the time of Commit processing.

Find

One case data can be inquired from the DB by calling the find() method in the entity manager. The ID

of the subject entity in calling the find() method should be transmitted as an input factor.

Sample Source

private void assertDepartmentInfo(String departmentId, Department department)

 throws Exception {

 Department result = (Department) em.find(Department.class, departmentId);

 //...

}

Above example delivers and processes the Entity Id of departmentId as input factor to the find()

method of EntityManager.

Remove

One case data can be inquired from the DB by calling the remove() method in the entity manager.

Deliver the Entity that becomes the target at the time of remove() method calling as input factor.

Sample Source

public void testDeleteDepartment() throws Exception {

 // 1. insert a new Department information

 Department department = addDepartment();

 // 2. delete a Department information

 em.remove(department);

}

Above example delivers and processes the Entity of department to remove() method of EntityManager.

However, it should be noted that in above example, since department object is same object as the one

registered in DB, remove cannot be used as it is. But, if only key is created new identically, remove
cannot be used directly. In this case, process as follows.

Sample Source

public void testDeleteDepartment() throws Exception {

 Department department = new Department();

 department.setDeptId = "DEPT_1";

 // 2. delete a Department information

 em.remove(em.getReference(Department.class, department.getDeptId()));

}

In above example, call getReference method, extract the object information corresponding to Id of

Entity and call remove with that information as input factor.

Disposition

One case data can be inquired from the DB by calling the persist() method in the entity

manager.Delete items in the memory by calling flush(),clear() with certain term in order to prevent

OutOfMemoryException.

Sample Source

public void testMultiSave() throws Exception {

 for (int i = 0; i < 900 ; i++) {

 Department department = new Department();

 String DeptId = "DEPT-000" + i;

 department.setDeptId(DeptId);

 department.setDeptName("Sale" + i);

 department.setDesc("Sales Department" + i);

 em.persist(department);

 logger.debug("=== DEPT-000"+i+" ===");

 // To avoid OutOfMemoryException

 if (i != 0 && i % 9 == 0) {

 em.flush();

 em.clear();

 }

 }

}

Callback Methods

Callback function is defined by defining entity classes or EntityListner to separate the logics as business

logic checking into before and after the actual entity operation.

Callback Methods

Method Name Description Related Operation

PrePersist Execute at the timing before Persist persist

PostPersist Execute at the timing after Persist persist

PreRemove Execute at the timing before Remove remove

PostRemove Execute at the timing after Remove remove

PreUpdate Execute at the timing before Update merge

PostUpdate Execute at the timing after Update merge

PostLoad Execute at the timing after Find find

Defining in Entity

The callback function is subscribed on the annotation directly on the entity class to define methods.

Define Source – Define in Entity class

@Entity

public class User {

 @PrePersist

 @PreUpdate

 protected void validateCreate() throws Exception {

 if (getSalary() < 2000000)

 throw new Exception("Insufficient Salary !");

 }

}

Above example shows whether salary is below 2,000,000 before the timing before Persist, Update.

Update corresponds to the case of using merge() of EntityManager and the case of performing update
using ql.

Sample Source - merge() use case

@Test

public void testUpdateFailUser() throws Exception {

 newTransaction();

 User getUser = (User) em.find(User.class, "User1");

 assertEquals(getUser.getSalary(), sal);

 user.setSalary(1000000);

 em.merge(user);

 // 2. Update User , execute update when transaction terminates rather than above merge() calling.

 try{

 closeTransaction();

 }

 catch(Exception e){

 e.printStackTrace();

 assertTrue("fail to PreUpdate.",e instanceof Exception);

 }

}

Above example shows that Exception occurs if the salary is set to below 2000000 and updated.

Sample Source - Update case through ql

@Test

public void testUpdateFail2User() throws Exception {

 newTransaction();

 User getUser = (User) em.find(User.class, "User1");

 StringBuffer ql = new StringBuffer();

 ql.append("UPDATE User user ");

 ql.append("SET user.salary = :salary ");

 ql.append("WHERE user.userId = :userId ");

 Query query = em.createQuery(ql.toString());

 query.setParameter("salary", 1000000);

 query.setParameter("userId",getUser.getUserId());

 // 2. Update User , Update executed when terminating Transaction rather than above merge()

calling.

 try{

 closeTransaction();

 }

 catch(Exception e){

 e.printStackTrace();

 assertTrue("fail to PreUpdate.",e instanceof Exception);

 }

}

Above example shows that exception occurs if the salary is set to below 2000000 and updated. It can

be also checked that Exception occurs identically when requesting the Update using ql.

Defining EntityListener

The EntityListener is indicated on the entity class. Indicate the annotation on the EntityListener to

define methods.

Define Source – Define to EntityListener class

@Entity

@EntityListeners(egovframework.sample.model.callback.AlertMonitor.class)

public class User {

}

// AlertMonitor class defined above

public class AlertMonitor {

 @PostPersist

 public void newUserAlert(User user) {

 System.out.println(user.getUserName()+" Created!");

 }

 @PostLoad

 public void usrGetAlert(User user) {

 System.out.println(user.getUserName()+" Get!");

 }

}

It differs in that the location of definition differs and original entity should be transferred to the

parameter, but it works same as the designation in entity class.

